294 research outputs found

    Crystalline silicate dust around evolved stars: I. The sample stars

    Get PDF
    This is the first paper in a series of three where we present the first comprehensive inventory of solid state emission bands observed in a sample of 17 oxygen-rich circumstellar dust shells surrounding evolved stars. The data were taken with the Short and Long Wavelength Spectrographs on board of the Infrared Space Observatory (ISO) and cover the 2.4 to 195 μm wavelength range. The spectra show the presence of broad 10 and 18 μm bands that can be attributed to amorphous silicates. In addition, at least 49 narrow bands are found whose position and width indicate they can be attributed to crystalline silicates. Almost all of these bands were not known before ISO. The incredible richness of the crystalline silicate spectra observed by ISO allows detailed studies of the mineralogy of these dust shells, and is a telltale about the origin and evolution of the dust. We have measured the peak positions, widths and strengths of the individual, continuum subtracted bands. Based on these measurements, we were able to order the spectra in sequence of decreasing crystalline silicate band strength. We found that the strength of the emission bands correlates with the geometry of the circumstellar shell, as derived from direct imaging or inferred from the shape of the spectral energy distribution. This naturally divides the sample into objects that show a disk-like geometry (strong crystalline silicate bands), and objects whose dust shell is characteristic of an outflow (weak crystalline silicate bands). All stars with the 33.6 μm forsterite band stronger than 20 percent over continuum are disk sources. We define spectral regions (called complexes) where a concentration of emission bands is evident, at 10, 18, 23, 28, 33, 40 and 60 μm. We derive average shapes for these complexes and compare these to the individual band shapes of the programme stars. In an Appendix, we provide detailed comments on the measured band positions and strengths of individual sources

    CO emission from shock and PDR in C-rich PN and post-AGB objects

    Get PDF
    The LWS full grating scans of the PN, NGC 7027, and post-AGB objects, GL618 and GL2688 reveal a forest of lines which are identified as CO rotational lines. These lines are used as diagnostics for warm gas around these objects. For NGC 7027 and GL 618, the hot central star is the source of the ionizing photons, creating a PDR. GL2688 is a cooler post-AGB star with evidence of a fast wind which results in shock heated gas. From the CO observations, we can estimate the density of the molecular layer. In agreement with earlier work, we found that the molecular layer is warm (T~ 350-600 K) and dense (n~ 107 cm-3). This may have implications on mass loss during the last stage of the evolution before stars evolve off the AGB

    Low-excitation atomic gas around evolved stars: II. ISO observations of O-rich nebulae

    Get PDF
    We have observed atomic fine-structure lines in the far-infrared (FIR) from 12 oxygen-rich evolved stars. The sample is composed of mostly proto-planetary nebulae (PPNe) and some planetary nebulae (PNe) and asymptotic giant branch (AGB) stars. ISO LWS and SWS observations of [O I], [C II], [N II], [Si I], [Si II], [S I], [Fe I], and [Fe II] lines were obtained. Taking into account also the sample presented by Fong et al. (Paper I) of carbon-rich evolved stars, we find that PPNe emit in these low-excitation atomic transitions only when the central star is hotter than ∼10 000 K. This result suggests that such lines predominantly arise from photodissociation regions (PDRs), and not from shocked regions. The line widths determined from our Fabry-Perot data also suggest that the FIR lines arise from relatively quiescent PDR gas, as opposed to shocked gas. Our results are in reasonable agreement with predictions from PDR emission models, allowing the estimation of the density of the emitting layers by comparison with the model results. On the other hand, the comparison with predictions of the emission from J-type and C-type shocked regions suggests that detected lines do not come from shocks. The [C II] line flux has been used to measure the mass of the low-excitation atomic component in PPNe, since this transition has been found to be a useful model-independent probe to estimate the total mass of these PDRs. The derivation of the mass formula and assumptions made are also discussed

    Gas-phase SO2 in absorption towards massive protostars

    Get PDF
    We present the first detection of the v(3) ro-vibrational band of gas-phase SO2 in absorption in the mid-infrared spectral region around 7.3 mum of a sample of deeply embedded massive protostars. Comparison with model spectra shows that the derived excitation temperatures correlate with previous C2H2 and HCN studies, indicating that the same warm gas component is probed. The SO2 column densities are similar along all lines of sight suggesting that the SO2 formation has saturated, but not destroyed, and the absolute abundances of SO2 are high (similar to 10(7)). Both the high temperature and the high abundance of the detected SO2 are not easily explained by standard hot core chemistry models. Likewise, indicators of shock induced chemistry are lacking

    The origin of [C II] 157 μm emission in a five-component interstellar medium : the case of NGC 3184 and NGC 628

    Get PDF
    With its relatively low ionization potential, C+ can be found throughout the interstellar medium (ISM) and provides one of the main cooling channels of the ISM via the [C II] 157 mu m emission. While the strength of the [C II] line correlates with the star formation rate, the contributions of the various gas phases to the [C II] emission on galactic scales are not well established. In this study we establish an empirical multi-component model of the ISM, including dense H II regions, dense photon dissociation regions (PDRs), the warm ionized medium (WIM), low density and G(0). surfaces of molecular clouds (SfMCs), and the cold neutral medium (CNM). We test our model on ten luminous regions within the two nearby galaxies NGC 3184 and NGC 628. on angular scales of 500-600 pc. Both galaxies are part of the Herschel. key program. KINGFISH,. and are complemented by a large set of ancillary ground-and space-based data. The five modeled phases together reproduce the observed [C II] emission quite well, overpredicting the total flux slightly (about 45%) averaged over all regions. We find that dense PDRs are the dominating component, contributing 68% of the [C II] flux on average, followed by the WIM and the SfMCs, with mean contributions of about half of the contribution from dense PDRs, each. CNM and dense H II regions are only minor contributors with less than 5% each. These estimates are averaged over the selected regions, but the relative contributions of the various phases to the [C II] flux vary significantly between these regions

    The Origin of [CII] 157 μm Emission in a Five-component Interstellar Medium: The Case of NGC 3184 and NGC 628

    Get PDF
    With its relatively low ionization potential, C+ can be found throughout the interstellar medium (ISM) and provides one of the main cooling channels of the ISM via the [C II] 157 μm emission. While the strength of the [C II] line correlates with the star formation rate, the contributions of the various gas phases to the [C II] emission on galactic scales are not well established. In this study we establish an empirical multi-component model of the ISM, including dense H II regions, dense photon dissociation regions (PDRs), the warm ionized medium (WIM), low density and G_0 surfaces of molecular clouds (SfMCs), and the cold neutral medium (CNM). We test our model on ten luminous regions within the two nearby galaxies NGC 3184 and NGC 628 on angular scales of 500–600 pc. Both galaxies are part of the Herschel key program KINGFISH, and are complemented by a large set of ancillary ground- and space-based data. The five modeled phases together reproduce the observed [C II] emission quite well, overpredicting the total flux slightly (about 45%) averaged over all regions. We find that dense PDRs are the dominating component, contributing 68% of the [C II] flux on average, followed by the WIM and the SfMCs, with mean contributions of about half of the contribution from dense PDRs, each. CNM and dense H II regions are only minor contributors with less than 5% each. These estimates are averaged over the selected regions, but the relative contributions of the various phases to the [C II] flux vary significantly between these regions

    The enigmatic nature of the circumstellar envelope and bow shock surrounding Betelgeuse as revealed by Herschel

    Get PDF
    Context. The interaction between stellar winds and the interstellar medium (ISM) can create complex bow shocks. The photometers on board the Herschel Space Observatory are ideally suited to studying the morphologies of these bow shocks. Aims. We aim to study the circumstellar environment and wind-ISM interaction of the nearest red supergiant, Betelgeuse. Methods.Herschel PACS images at 70, 100, and 160 μm and SPIRE images at 250, 350, and 500 μm were obtained by scanning the region around Betelgeuse. These data were complemented with ultraviolet GALEX data, near-infrared WISE data, and radio 21 cm GALFA-HI data. The observational properties of the bow shock structure were deduced from the data and compared with hydrodynamical simulations. Results. The infrared Herschel images of the environment around Betelgeuse are spectacular, showing the occurrence of multiple arcs at ~6–7′ from the central target and the presence of a linear bar at ~9′. Remarkably, no large-scale instabilities are seen in the outer arcs and linear bar. The dust temperature in the outer arcs varies between 40 and 140 K, with the linear bar having the same colour temperature as the arcs. The inner envelope shows clear evidence of a non-homogeneous clumpy structure (beyond 15′′), probably related to the giant convection cells of the outer atmosphere. The non-homogeneous distribution of the material even persists until the collision with the ISM. A strong variation in brightness of the inner clumps at a radius of ~2′ suggests a drastic change in mean gas and dust density ~32 000 yr ago. Using hydrodynamical simulations, we try to explain the observed morphology of the bow shock around Betelgeuse. Conclusions. Different hypotheses, based on observational and theoretical constraints, are formulated to explain the origin of the multiple arcs and the linear bar and the fact that no large-scale instabilities are visible in the bow shock region. We infer that the two main ingredients for explaining these phenomena are a non-homogeneous mass-loss process and the influence of the Galactic magnetic field. The hydrodynamical simulations show that a warm interstellar medium, reflecting a warm neutral or partially ionized medium, or a higher temperature in the shocked wind also prevent the growth of strong instabilities. The linear bar is probably an interstellar structure illuminated by Betelgeuse itself

    Waves on the surface of the Orion molecular cloud

    Full text link
    Massive stars influence their parental molecular cloud, and it has long been suspected that the development of hydrodynamical instabilities can compress or fragment the cloud. Identifying such instabilities has proved difficult. It has been suggested that elongated structures (such as the `pillars of creation') and other shapes arise because of instabilities, but alternative explanations are available. One key signature of an instability is a wave-like structure in the gas, which has hitherto not been seen. Here we report the presence of `waves' at the surface of the Orion molecular cloud near where massive stars are forming. The waves seem to be a Kelvin-Helmholtz instability that arises during the expansion of the nebula as gas heated and ionized by massive stars is blown over pre-existing molecular gas.Comment: Preprint of publication in Natur

    Massive-star supernovae as major dust factories

    Get PDF
    We present late-time optical and mid-infrared observations of the Type II supernova 2003gd in the galaxy NGC 628. Mid-infrared excesses consistent with cooling dust in the ejecta are observed 499 to 678 days after outburst and are accompanied by increasing optical extinction and growing asymmetries in the emission-line profiles. Radiative-transfer models show that up to 0.02 solar masses of dust has formed within the ejecta, beginning as early as 250 days after outburst. These observations show that dust formation in supernova ejecta can be efficient and that massive-star supernovae could have been major dust producers throughout the history of the universe
    • …
    corecore